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Coupling between meniscus and smectic-A films: Circular and catenoid profiles, induced stress,
and dislocation dynamics
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In this paper we discuss the formation and shape of the meniscus between a free-standing film of a smectic-A
phase and a wall~in practice the frame that supports the film!. The wall may be flat or circular, and the system
with or without a reservoir of particles. The formation of the meniscus is always an irreversible thermodynamic
process, since it involves the creation of dislocations in the bulk~therefore it involves friction!. The four basic
shapes of meniscus discussed are the following: exponential, algebraic (x3/2), circular, and catenoid. Three
principal regions of the whole meniscus must be distinguished: close to the wall with a high density of
dislocations, away from the wall with medium density of dislocations, and far from the wall~i.e., close to the
film! with a low density of dislocations~vicinal regime!. The region with medium density of dislocations is
observable using a microscope, and is determined by the competition between surface tension, energy of
dislocations, and pressure difference set by the mass of the meniscus or by the reservoir. Its profile is circular
as observed in recent experiments@J.-C. Géminard, R. Hołyst, and P. Oswald, Phys. Rev. Lett.78, 1924
~1997!#. By contrast, the vicinal regime with low density of dislocations is never observable with an optical
microscope. In the regime with a high density of dislocations, the reasons why the dislocations tend to gather
by forming giant dislocations and rows of focal conics are discussed. Finally, we discuss the stability of a
smectic film with respect to the formation of a dislocation loop. We show experimentally that the critical radius
of the loop is proportional to the curvature radius of the meniscus in its circular part, in agreement with the
theory. In addition, we show that the mobility of edge dislocations measured in thick films is in agreement with
that found in bulk samples from a creep experiment. This result confirms again our model of the meniscus.

PACS number~s!: 61.30.Eb, 61.30.Jf, 68.10.2m
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I. INTRODUCTION

The size of the meniscus in ordinary liquids is set by
capillary length@1#

l c5S gLA

rg D 1/2

, ~1.1!

which reflects the competition between the gravity and
surface tension in the creation of the meniscus. HeregLA is
the liquid-air surface tension,r is the liquid density, andg is
the gravitational acceleration. The height of the meniscu
the wall h0 is set by the competition between the capillar
forces and the gravity@Fig. 1~a!#,

h05S 2
gLA~12sinu!

rg D 1/2

, ~1.2!

andu is a contact angle at the wall given by

cosu5
gWA2gWL

gLA
. ~1.3!

The following surface tensions appear:gLA , gWL , andgWA ,
whereW stands for wall,L for liquid, andA for air. Taking
typical values we find that the horizontal size of the men
cus is of the order of 0.2 cm, and that is why we can se
easily. Far away from the wall, located atx50, the meniscus
has the exponential form
PRE 621063-651X/2000/62~3!/3747~11!/$15.00
e

e

at

-
it

h~x!5h0 exp~2x/ l c!. ~1.4!

The experiments performed on smectic liquid crystal film
give completely different results@2#. First of all the size of
the smectic meniscus may be about two orders of magnit
smaller than the simple estimate based on the capil
length given by Eq.~1.2!. Moreover, its shape is circular an
not exponential. These observations called for some theo
ical explanation, and it is the purpose of this paper to
scribe the formation of smectic meniscus and to describe
differences between simple liquids and smectic-A liquid
crystals. As far as we know the problem of formation of
meniscus in complex liquids has just started to be stud
@2,3#.

The paper is organized as follows. In Sec. II we discu
the main differences between the formation of a smectic m
niscus and a meniscus in ordinary liquids. In Sec. III w
derive the form of the meniscus for smectic liquid crysta
near a flat wall. In Sec. IV we discuss the stability of
smectic film with respect to the formation of a dislocatio
loop, and we show that our theoretical model is in agreem
with the experiment.

II. FORMATION OF A MENISCUS IN SMECTICS

Molecules in smectic-A liquid crystal are arranged in liq
uidlike layers parallel to each other. The distance betw
the layersd'30 Å is set by the lengthl of the liquid crys-
talline molecules (l<d<2l ). Dislocations, known from the
theory of solid structure@4#, also appear in smectic liquid
3747 ©2000 The American Physical Society
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crystals@5–8#. If we want to change the number of layers
a monodomain of a smectic sample, we have to nucle
elementary edge dislocations. An elementary disloca
changes the number of layers of the sample by one; in p
ciple one can have edge dislocations that change the num
of layers by more than one layer. The nucleation of dislo
tions has a clear implication for the formation of the men
cus that forms between a free-standing film and its supp
namely, the height of the meniscus depends on the proce
its creation, i.e., on the number of dislocations created du
the process. If the number of dislocations in the meniscu
N, its height at the wall is fixed, and is equal toNd. Here we
assume that the smectic layers are perpendicular to the
tical wall of the frame.

In simple liquids, the height of the meniscus given
Eqs. ~1.2! and ~1.3! does not depend on the process wh
leads to its creation, while in smectic liquid crystals t
height is fixed by the process. Because the energy barrie
the creation of an edge dislocation is usually much gre
than the thermal energy, the capillary forces do not play
role in determining the meniscus height. This is the first cl
difference between simple liquids and smectic liquid cr
tals.

Needless to say, the creation of the meniscus in an o
nary liquid can be obtained in a reversible process. In
smectic this is not true, and any process leading to the
ation of the meniscus is irreversible. This is due to the
cessity to nucleate dislocations.

It is therefore obvious that in an ordinary liquid the fin
state of the meniscus will be always the same irrespectiv
the particular process leading to its creation. This is not t
in smectics, where different processes may lead to diffe
final states. In one process we may createN dislocations, and
in the otherN11, and, although we may reach the sam

FIG. 1. Schematic representation of the water-air meniscus
a vertical wall~a!, and of the meniscus between a smectic film a
a vertical wall~b!. Regions~1!–~3! are defined in the text.
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thermodynamic state, the meniscus will be different in the
two cases.

Another difference between ordinary liquids and smect
is more subtle, yet it determines the shape of the sme
meniscus and explains the metastability of the films. Inde
it is common knowledge that, due to mechanical equilibriu
an isotropic liquid in contact with air must have the sam
pressure as the air if its interface is flat. However, this d
not have to be so in a smectic-A liquid crystal, because its
layers are elastic and can support a normal elastic stress.
stresss can equilibrate any pressure differenceDp5pair
2psmectic imposed by the meniscus, providing it is not to
large~this point will discussed below!. This remark is crucial
for understanding themetastabilityof smectic free-standing
films where we know that the numberm of layers can be
experimentally controlled one by one fromm very large
down tom52 @9,10#. It also explains why the film tensiont
linearly depends on its thicknessH5md,

t52gSA1DpH, ~2.1!

wheregSA is the surface free energy of the smectic-air int
face. This law has was found experimentally in Refs.@9, 11#.
Finally, the stress will be permanent in the film if the syste
is not coupled to a reservoir of particles at the same pres
as pair , with a value directly related to the total volume o
the meniscus. More precisely, we will show in Sec. III th
the meniscus profile is essentially circular@2# ~of radiusR!
close to the film, and that the stresss52Dp is related toR
via the Laplace law

R5
gSA

Dp
. ~2.2!

It is important to note that the elastic stresss vanishes on
average inside the meniscus because the dislocations~which
we know to be repulsed by free surfaces in smectic-A phases
@12#! can climb parallel to the layers to relax the stress. W
also emphasize that all these results are true providing
we neglect the elastic interactions between dislocatio
which we know to be true when they are located in the sa
plane@7,8#. Below, we discuss the meniscus shape in m
details.

III. SHAPE OF THE SMECTIC MENISCUS
NEAR A FLAT WALL

Let us assume that we have a flat wall in contact with
smectic. Thez axis is along the wall, and thex axis is per-
pendicular to the wall.

In smectic-A liquid crystals, we distinguish three principa
regions of the whole meniscus@Fig. 1~b!#: close to the wall
with a high density of dislocations, away from the wall wi
a medium density of dislocations, and far from the wall~i.e.,
close to the film! with a low density of dislocations. In the
first region~the least known! the dislocations group togethe
to form giant dislocations of very large Burgers vectors~up
to hundreds of layers!. These dislocations are unstable wi
respect to the formation of focal conics@13#, and turn into
‘‘oily streaks’’ which are well visible through the micro
scope@14#. In the region with a medium density of disloca
tions the typical distance between the dislocations is sma
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PRE 62 3749COUPLING BETWEEN MENISCUS AND SMECTIC-A . . .
than the size of typical deformations at the surface indu
by a single dislocation, but large enough to prevent the
mation of giant dislocations and focal conics. This part of
meniscus was studied experimentally and theoretically
Ref. @2#, but is described here theoretically in more deta
Finally, when the typical distance between dislocations
comes larger than the typical size of the deformation of
surface one enters the vicinal regime, which we discuss
the first time in this paper, to our knowledge. We emphas
that in the first region the energy of focal conics and
gravity play most probably important roles in the determin
tion of the shape of the meniscus. In the second region,
surface tension, pressure difference, and energy of disl
tions dominate, whereas in the third region~vicinal regime!
entropic interactions between dislocations are important.

In the following, we describe the vicinal regime and t
intermediate region with medium density of dislocation
Their spatial extensions are also estimated.

A. Vicinal regime

In this section we calculate the meniscus profile in
vicinal region, and in particular estimate its vertical size. F
simplicity we will set the boundary conditions at the wa
neglecting for a moment the two regions of medium and h
density of dislocations, and assuming that our vicinal reg
extends from the wall up to infinity. We find that the vertic
size of the vicinal region is comparable to the smectic per
d. It means that the vicinal region is so small that from t
practical point of view it can be neglected, since it cannot
even observed in the experiments. Below we present a
tailed discussion and calculations. At the matching point
tween the film and its meniscus, the distance between d
cations must diverge. As a consequence, there should ex

FIG. 2. ~a! Meniscus in the vicinal regime. The dislocations a
well separated.~b! Meniscus in the regime with medium density
dislocations. The distanceL between two dislocations is smalle
than the widthW of the distortion produced by one dislocation
the surface. In this limit, the surface is smooth.
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region where the dislocations are far apart from each othe
be considered as independent@Fig. 2~a!#. This condition is
fullfilled if the distanceL between two neighboring disloca
tions is larger than the widthW of the distorsion they pro-
duce at the free surface. According to Ref.@12#, W
52A2plD/ f (j), where D5H12h is the total thickness
@H is the thickness of the flat film, andh(x) is the height of
the meniscus above the flat film#, l5AK/B is the smectic
penetration length, andf (j) is a function of the dimension
less parameterj5(gSA2AKB)/(gSA1AKB). Function
f (j) varies from 1 to 0 whenj varies from 0 to 1, but is
always very close to 1 with usual values ofK, B, andgSA in
smectics~K is the bending modulus of the layers, andB their
compressibility modulus!. Thus condition

L>2A2plD ~3.1a!

must be satisfied in the vicinal regime. In this case, the fi
surface is flat between two dislocations so that the exces
the surface free energy may be included in the self-energ
each dislocation. This way, the calculation of the shape
the meniscus is the same as in the theory of solids@15#. The
main steps of the calculation are the following.

First of all, we assume that the Burgers vectorb of each
dislocation is equal to the layer thicknessd, and that the total
number of dislocations is fixed and given by 2h0 /d, where
h05h(x50) is the height of the meniscus at the wall. Th
surface energy is constant because the surface betwee
dislocations is flat.

Now the free energy associated with the dislocations m
contain their self-energy and the interactions between
dislocations. There are two contributions to the dislocat
interactions: one is entropic and one is elastic~via the defor-
mations of the free surface!. The former has the formA/(x
2x8)2, wherex andx8 are the locations of two dislocations
The coefficientA depends on both the temperature and
energyE of the dislocations@15#, and scales like (kBT)2/E.
The latter decreases exponentially with the distance betw
the dislocations@8# @as exp2(x2x8)2#. Numerical calcula-
tions show that elastic interactions are negligible with
spect to entropic interactions~less than 10%! when L5ux
2x8u>3W. This condition, which reads

L>6A2plD, ~3.1b!

is more restrictive than Eq.~3.1a!. We assume it is satisfied
in the vicinal regime. Finally, we assume that the interactio
are restricted to the nearest neighbors. This way, the ela
energy of the system withN dislocations minus the energy o
the system with zero dislocation per unit length is given

F~xi !5(
i 52

N
A

uxi2xi 21u2
1EN12~gWS2gWA!h0 ,

~3.2!

wherexi is the distance of thei th dislocation from the wall.
The following surface tensions appear:gSA, gWS, andgWA ,
whereW stands for the wall,S for the smectic, andA for the
air. If the system is not connected to a reservoir of partic
then the volume of the meniscus is fixed, i.e.,
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x1h01 (
i 51

N21

uxi 112xi uhi5const, ~3.3!

where hi5(N2 i )d/2 is the thickness of the meniscus b
tween dislocationsi and i 11. The shape of the meniscus
given by the locationsxi of the dislocations that minimize
Eq. ~3.2! with condition~3.3!. In the continuous form~easier
for calculations! the elastic energy is written as

F@h#5E
0

xf
dx A„r~x!…312Eh0 /d12~gWS2gWA!h0 ,

~3.4!

wherer(x)52(2/d)(dh/dx) is the density of dislocations
per unit length, andh(x) the height of the meniscus abov
the flat surface of the film. Condition~3.3! is now given by

2E
0

xf
dx h~x!5const. ~3.5!

By taking condition~3.5! into account, minimization of
Eq. ~3.4! with respect toh(x) gives

12A

d3

d

dx S dh

dxD
2

1Dp50. ~3.6!

The solution of Eq.~3.6! is

h~x!5aS xf2x

a D 3/2

, ~3.7!

wherea527A/(d3Dp) is a characteristic length. The leng
xf and the differenceDp5pair2psmecticbetween the air pres
sure and the pressure in the smectic are obtained from
boundary conditionh(x50)5h0 and the condition of fixed
volume @Eq. ~3.5!#.

In practice,Dp is fixed by the rest of the meniscus~which
plays the role of a reservoir!, while h0 may be defined as th
maximal height of the meniscus above which conditi
~3.1b! fails. With this definition, h0 /(d/2) represents the
maximal number of dislocations in the vicinal regime. Equ
tions ~3.7! and ~3.1b! give, by assuming thath0!H,

h0

d/2
5

1

27&

~kBT!2

Ed5/2l3/2

1

Dpm3/2, ~3.8!

where m is the number of layers in the free-standing fil
(H5md). With d530 Å, l510 Å, and E5531027 dyn
we calculate~in CGS units!

h0

d/2
5

60

Dpm3/2. ~3.9!

In typical experiments,Dp>100 dyn/cm2 ~see Sec. IV! and
m>3 which givesh0 /(d/2)<0.3 ~soh0!H, as we assumed
above!. This result shows that it does not make sense
speak about the vicinal regime in typical experiments, a
that entropic interactions are negligible and always do
nated by elastic and surface tension effects.
he

-

o
d
i-

B. Region with a medium density of dislocations

According to the previous discussion, the dislocations
always so close to each other that they can never be con
ered as independent. Moreover,L!6A2plD in the region
observable with an optical microscope. In this limit the d
locations can be replaced by a continuous distribution
infinitesimal dislocations along thex axis, so that the free
surface is smooth at all scales@Fig. 2~b!#. This regime ex-
tends to the matching point with the film~at x5xf!, since the
vicinal regime has a negligible extension, so we may set
h50 at point x5xf . The energy of the system minus th
energy of the system withh(x)[0 per unit length is then
given by @2#

F@h~x!#52gSAE
0

xf
dx„A11~dh/dx!221…

12~gWS2gWA!h012DpE
0

xf
dx h~x!

2E
0

xf
dx E

2

d

dh

dx
. ~3.10!

The first term corresponds to the excess of surface
energy in the limit of a continuous distribution of disloc
tions in the midle plane of the film; the second term~which
is constant ifh0 is fixed! corresponds to the change of su
face energy at the wall; the third term corresponds to
work of the pressure (Dp is the difference between the a
pressure and the pressure in the smectic!; and the fourth term
describes the energy of the dislocations, that we assume
proportional to their local densityr(x)52(2/d)(dh/dx)
and to some energyE. The important point here is thatE
does not depend explicitly onh anddh/dx, and corresponds
to the core energy of the dislocations in the limit of a co
tinuous distribution.

In the system there are two boundary conditions

h~x50!5h0 ~3.11!

and

dh

dx
~x5xf !50 ~3.12!

at point x5xf , where the meniscus matches the smec
film. This condition is fulfilled if the interactions between th
two free surfaces are negligible, which assumes that the
is thick enough~typically, its thickness must be more than 5
layers, a point we will discuss in a forthcoming publication!.
Another condition depends on whether the meniscus
coupled to a reservoir of particles or not. If there is no re
ervoir, then the total volume of the meniscus is fixed, a
this gives rise to the additional condition, i.e.,

2E
0

xf
dx h~x!5const. ~3.13!

With this condition, the point whereh(x)50 ~i.e., for x
5xf! and the pressure differenceDp depend on the volume
If the system is coupled to a reservoir of particles,Dp is
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given, which allows us to calculate the positionxf of the
matching point and the volume of the meniscus.

The minimization off @h(x)# with respect toh(x) gives
the following equation for the profileh(x):

Dp2gSA

d

dx S dh/dx

A11~dh/dx!2D 50. ~3.14!

Please note thatE does not appear in Eq.~3.14! due to the
specific form of the energy term associated with dislocatio
Also, the forces acting between the wall and the smectic
not appear in the boundary condition because the total he
of the meniscus at the wall is supposed to be fixed by
number of dislocations.

The second term in Eq.~3.14! can be rewritten as

gSA

~d2h/dx2!

„11~dh/dx!2
…

3/2, ~3.15!

which is simply the curvature at pointx multiplied by the
surface tension. Thus Eq.~3.14! is nothing more than a
Laplace law. Its solution is a circle of radiusR
5(Dp/gSA), i.e.,

h~x!5R2AR22~x2xf !
2. ~3.16!

Finally we note that we have completely neglected
gravitational force, which is completely justified in usual e
periments@h0! l c , the gravitational capillary length define
in Eq. ~1.1!#. In Appendix A, we describe the case of a m
niscus near a cylindrical wall. Its shape resembles a caten
but its radial profile differs greatly from the circular one on
whenDp50. This case is not very pertinent experimental
so we report the calculation in Appendix A.

All these descriptions~with a circular or a catenoid pro
file! are valid close to the film, as long as the density
dislocations is not too high. On the other hand, the exp
ment shows that giant dislocations parallel to the rim of
film nucleate in the thicker part of the meniscus~Fig. 3!.

FIG. 3. Microscopic observation of a film and its meniscu
using both transmitted and reflected monochromatic light. The
terference fringes observed in the thinnest part of the meniscus
the curvature radius of the meniscus (R52.8 mm). Giant disloca-
tions and chains of focal conics are visible in the thickest part of
meniscus. The distanceDmin defines the part of the meniscus
which the dislocations are elementary.
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These dislocations are rapidly unstable with respect to
formation of focal conics, and form strings of focal coni
well visible in the thicker part of the meniscus. This pheno
enon was explained by Boltenhagen, Lavrentovich, and K´-
man @13#. The first dislocation that nucleates has a typic
width of 1 mm in the transmission microscope, which corr
sponds to a Burgers vector of about 30 layers. The Burg
vector then systematically increases when the menis
thickness increases. In Sec. III C, we discuss at which c
ditions giant dislocations may appear in the meniscus.

C. Formation of giant dislocations in the regime
with a high density of dislocations

It is well known that in smectics, the dislocations tend
group together to form giant dislocations. This effect is d
to the fact that in a bulk sample, the elastic energy o
dislocation is proportional to its Burgers vector. Then grou
ing n elementary dislocations together to form a giant dis
cation of Burgers vectornd is energetically favorable, sinc
it allows to reduce the core energy~one core instead ofn!. In
confined geometry, the situation is more complicated
cause of the influence of the surfaces that limit the sample
particular, the confinement effect and the interactions w
the surfaces must be taken into account. This problem
solved when the smectic is confined between a plane an
sphere treated in homeotropic anchoring. In this case
elementary dislocations first group together two by two, th
three by three, and so on, when the thickness of the sam
~and so the density of dislocations! increases. This effect wa
observed experimentally both in thermotropic and lyotro
liquid crystals@16,17#.

The situation is similar inside a meniscus apart from
fact that now, the two limiting surfaces are no longer so
but deformable. This difference is important and leads t
different behavior.

To analyze this problem, we first consider a circular m
niscus of radius of curvatureR much greater thanh,

h~x!5
1

2R
~xf2x!2, ~3.17!

and we assume that all the dislocations are elementary@Fig.
4~a!#. We then consider a set ofn dislocations at distance
D5xf2x from the rim of the film.

In which conditions is it energetically favorable to gath
these dislocations@Fig. 4~b!#? To answer this question, w
successively calculate the excess energy of the two confi
rations~with respect to the configuration with zero disloc
tion!. For the first one~n elementary dislocation separate
one from the other!, we have

E15nE1ngSAad. ~3.18!

In this expressionE is the energy of an elementary disloc
tion. It contains two contributions: the core energyEc and an
elastic energy proportional tod and equal to (AKB/2)d ~by
assuming the core radius is equal tod! @18#. The second term
in gSA corresponds to the excess of surface free energy
to the slopea of the free surface. This term is proportional
the slope square~becausend5a l , where l is the distance
covered by then dislocations!, and may be understood as th
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surface mediated interaction between dislocations. As
point x,a5D/R ~with xf2x5D!, Eq. ~3.18! becomes

E1~n,D!5nEc1n
AKB

2
d1n

gSAd

2

D

R
. ~3.19!

In the second configuration,n elementary dislocations ar
replaced by a dislocation of Burgers vectorb5nd. For large
n, it is reasonable to suppose that the dislocation splits
two wedge disclinations of ranks12 and21

2. In this case, the
dislocation energy contains four terms: the core energy of
two disclinations of the order of 2Ec ; the curvature energy
of the layers of the 1/2 disclination, of the order
(pK/2)ln(n); the elastic energy outside the central zone
sizend, of the order of (AKB/2)nd, to which we must add a
fourth term corresponding to the interaction energy with
free surfaces. This term has been calculated exactly@12#, and
equals (Bln2d2/4AplD)Li 1/2(j), with l5AK/B, j5(gSA

2AKB)/(gSA1AKB), Li1/2(j)5Sp51
` jp(1/Ap), and D

'D2/R, the total thickness at pointxf2x5D ~by neglecting
the film thickness!. Collecting all the terms gives

E2~n,D!52Ec1
AKB

2
nd1p

K

2
ln~n!

1
Bln2d2AR

4AplD
Li1/2~j!. ~3.20!

FIG. 4. Meniscus before~a! and after~b! the grouping ofn
elementary dislocations at a distanceD from the edge of the film.
Note that in~b! a giant dislocation has formed.
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In order to find under which condition a giant dislocatio
of Burgers vectornd may develop, in Fig. 5 we numericall
plotted the differenceE22E1 as a function ofD for different
values of n. To do this calculation, we have chosenEc
50.1K ~which is usual for a core energy in smectics@19#!
and typical values forB, K, gSA, and R, namely, B
5108 erg/cm3, K51026 dyn, gSA525 erg/cm2, and R
51 mm. Please note that in Eq.~3.20! ‘‘the surface term’’
decreases as 1/D, so that giant dislocations must appear
the thick part of the meniscus whereD is large.

The graph in Fig. 5 shows that;n>2, there exists a mini-
mal distanceDmin below which the dislocations remain e
ementary. This limit unambiguously defines the regime w
medium density of dislocations discussed before. Beyo
this limit ~i.e., in the thick part of the meniscus! giant dislo-
cations tend to form. A surprising result shown by the n
merical calculations is that at the distanceDmin , the first
grouping energetically favorable has a Burgers vectorb
5nmind with nminÞ2. For instance, for a curvature radiusR
51 mm we obtainnmin520. This result is a consequence
the deformability of the free surface. The calculation a
shows that the thicker the meniscus, the larger the Burg
vector of the giant dislocations should be. We also calcu
the evolution ofDmin andnmin as a function of the curvature
radius of the meniscus~Fig. 6!. The results are thatDmin
scales likeR and thatnmin does not change significantly.

These predictions are well verified experimentally. I
deed, microscope observation shows that the first giant
locations have very large Burgers vectors@30 layers typically
in Fig. 3, while the theory predicts 24 layers forR
52.8 mm; see Fig. 6~b!#. The width of the circular regime
~without giant dislocation! also increases whenR increases,
and is of the same order of magnitude as that we predict.
instance, we measureDmin5170mm in Fig. 3, while Fig.
6~a! gives the theoretical valueDmin5200mm for R
52.8 mm.

FIG. 5. Difference between the energy of a dislocation of
Burgers vectornd and the energy ofn elementary dislocations as
function of the distanceD from the edge of the film for different
values ofn. The increment ofn between two thin curves is 2 and 1
between two thick lines. The valueDmin is the minimal distance
below which grouping is unfavorable. AtDmin the first giant dislo-
cation that forms has a Burgers vector of 20d. This calculation was
performed by choosing a 1-mm radius of the curvature of the m
niscus.
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In Sec. III, we propose an experiment to check the mo
of the meniscus in the case of fixed nonzeroDp. The experi-
ment consists of nucleating a dislocation loop in the fr
standing film, and of measuring its critical radius of nuc
ation and its mobility as a function of the radius of curvatu
of the meniscus in its circular part. These two quantit
depend on the model of meniscus, and are compared to s
lar data deduced from two other experiments.

IV. NUCLEATION OF DISLOCATION LOOPS
AND METASTABILITY OF SMECTIC FILMS

As we already mentioned in Sec. I, a smectic film is sta
over many days~and even several months in an atmosph
without dust particles! in spite of the stress to which it i
subjected. In practice, the pressure in the smectic is less
the air pressure, so that the film is homogeneously co
pressed over its whole surface. This stresss exerts a Peach
Koehler force with magnitudesd on any dislocation of Bur-
gers vectord in the film. This force tends to make the film
thinner, and allows the fabrication of films with homog
neous thicknesses. In practice, there are many disloca
~forming arch textures@9#! in the films immediately after
stretching. These dislocations progressively disappear by
ther annealing or moving to the meniscus. Usually, ma
hours are necessary to stabilize a film of constant thickn
In Ref. @2#, we showed that it is then possible to remove t
layers one by one by heating the film locally up to its tra
sition temperature to the nematic phase. A very thin hea
wire placed below the film is used to achieve the good c
dition of nucleation. The film is heated during a very sh

FIG. 6. ~a! Minimal grouping distance as a function of the cu
vature radius of the meniscus.~b! Burgers vectornmind of the giant
dislocation at distanceDmin as a function of the curvature radius o
the meniscus.
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interval of time~1–2 ms!, and then returns to its initial tem
perature~i.e., that of the oven! in a few ms. There are then
two possibilities: either the loop radius is smaller than t
critical radius of nucleation and it collapses, or the loop
larger and it grows to finally join the meniscus. Repea
measurements of the loop diameter as a function of t
allows measurements of the critical radius of nucleation a
the mobility of the dislocation. We recall that the critic
radius of nucleation is simply given byr c5E/dDp, and that
the mobility m is defined to beV5(m/d) f , where f is the
force acting on the dislocation andV its velocity. In the
asymptotic regime, when the radius of the loop is mu
larger thanr c we have simplyV5mDp. We now need to
know the pressure difference to calculateE andm. According
to the meniscus theory,Dp is given by the Laplace Law@Eq.
~2.2!#. As a consequence,r c andV are related to the radius o
curvatureR of the meniscus via the relations

r c5
E

dgSA
R, ~4.1!

V5m
gSA

R
. ~4.2!

Thus the theory predicts thatr c is proportional toR and that
the asymptotic velocityV is inversely proportional toR.

We performed systematic measurements by changing
radius of curvature of the meniscus by one order of mag
tude. All the measurements were performed in thick film
~more than 100 layers! of 8CB ~octylcyanobiphenyl! at
28 °C. Our experimental results are displayed in Fig. 7.
expected we found that, within experimental errors,r c is
proportional toR and V is inversely proportional toR. We

FIG. 7. ~a! Critical radius of nucleationr c as a function of the
curvature radius of the meniscusR. ~b! Velocity V of an elementary
dislocation when its radius is much larger thanr c as a function
of 1/R.
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deduce E'831027 dyn and m'4.431027 cm2 s g21.
These two values are also in good agreement with those
tained from two other experiments that do not imply t
meniscus model. Thus the line energy was obtained by m
suring the deformation of a dislocation loop in a vertical fi
under the action of the gravity field@20#: it gives E'6
31027 dyn at 28 °C, in good agreement with the previo
value. The mobility was obtained from a creep experime
In this experiment we measured the viscoelastic respons
a sample sandwiched between two glass plates treate
homeotropic anchoring and subjected to a sinusoidal de
mation ~see Appendix B for more details!. It gives m'4.2
31027 cm2 s g21 in excellent agreement with that found
thick films. This again confirms that the pressure field is w
given by the Laplace law in a smectic meniscus.

V. SUMMARY

The profile of a smectic meniscus is circular and not
ponential as in usual liquids. It matches tangentially the fi
~when it is thick enough! which suggests that the vicina
regime with profilex3/2 is very small. This result is con
firmed by the theory, which shows that it does not ma
sense to speak about this regime in typical experiments
the circular regime the dislocations are elementary, bu
close to each other that the deformations they induce at
free surface strongly overlap. In this limit the free surface
smooth, and its excess of free energy may be calculated
typical liquids. This observation leads to the typical Lapla
law that gives the hydrostatic pressure in the meniscus
equilibrium, the pressure is the same in the film as in
meniscus, so that the film is compressed. It turns out that
layers are elastic and can support this stress. This is the
son why it is possible to make stable films of variable thic
nesses. It is also possible to change the pressure in the
niscus, by changing the volume of the smectic sample or
stretching velocity of the film during its preparation. Th
observation shows that the final state depends on the wa
film has been created. We also checked experimentally
the Laplace law can be applied to smectic, by measu
both the critical radius of nucleation of a dislocation lo
and the mobility of an elementary dislocation. Finally w
have shown that elementary dislocations group togethe
form giant dislocations and chains of focal conic in the th
part of the meniscus. An interesting result is that the fi
‘‘giant’’ dislocation to appear has a very large Burgers ve
tor ~typically 20 layers!, which is different from what is ob-
served between rigid surfaces where the dislocations gr
progressively two by two. We mention that when the film
very thin ~less than 20 layers!, the circular profile is no
longer tangent to the film but makes an apparent angle
increases when the film thickness decreases. The pre
theory cannot explain this angle which is probably due to
disjoining pressure in the film. This effect will be describ
in a forthcoming publication.
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APPENDIX A: CATENOID MENISCUS NEAR
A CYLINDRICAL WALL

An unusual meniscus shape can be obtained near a c
drical wall for Dp50. First, we will discuss it in the genera
case (DpÞ0). This situation occurs when a needle pierc
the film @2#. We then show that when the system is coup
to a reservoir of particules (Dp50) the meniscus has
catenoid shape. Unfortunately the experimental realizatio
this case is beyond our reach.

Let us consider a cylindrical wall of radiusr 0 with the
smectic film around it. Leth be the height of the meniscu
andr the distance from the center of the cylindrical wall. W
assume thath(r 0) is fixed and we define pointr 1 by h(r 1)
50. By analogy with Eq.~3.10!, the total energy may be
written in the form

F@h~r !#52gSAE
r 0

r 1
2pr dr „A11~dh/dr !221…

12~gWS2gWA!2pr 0h~r 0!

12DpE
r 0

r 1
2pr dr h~r !

2E
r 0

r 1
2pr dr E

2

d

dh

dr
12pr 1E1 , ~A1!

where we have added the term 2pr 1E1 corresponding to
some energy excess of the first dislocation in the menis
As we shall see later, this term is necessary to obtain a
lution whenDp50. Minimization with respect toh(r ) gives

2rDp2E/d1gSA

d

dr S r dh/dr

A11~dh/dr !2D 50 ~A2!

whereDp is set by the size of the meniscus~in the case of a
fixed volume!, or is zero when the film is coupled to a re
ervoir at the air pressure. Note that we have neglected
gravity force since the meniscus is small. Equation~A2! can
be solved, but its full~and lengthy! analytical solution is not
very instructive. Therefore, let us consider some limiti
cases. For larger 0 and largeDp we obtain the circular me-
niscus studied in Sec. IV. This is true whenr 0Dp@E/d.
Now let us consider the opposite case of a small menis
@h(r 5r 0)5h0 is fixed and small with respect to the cap
lary length~1.1!# with Dp50, i.e., the meniscus is couple
to a reservoir of particles at the atmospheric pressure. In
case there are two terms in Eq.~A1!: the term with the en-
ergy of dislocation, and the term with surface tension. It
easy to find that the dislocation term is rather small, i
E/gSAd'0.1. For this reason we can treat the former a
perturbation.

Without the dislocations the meniscus would assume
shape of a minimal surface. A minimal surface is a surfa
whose area is minimal under the given boundary conditio
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Here we have the surface that is spanned between two
axial circles of radiir 0 ~radius of the cylinder! and r 1 ~the
second radius!. Such a surface is called a catenoid@21#. If we
include the dislocations and expand the solution of Eq.~A2!
in a small parametere5E/(gSAd), we find the following
equation for the profile:

h~r !5h`2r ` ln@r /r `1A~r /r `!221#2er`A~r /r `!221,

~A3!

where r ` and h` are integration constants that define t
point of the surface with a vertical tangent. Of course
radius of the cylinder,r 0 is greater thanr ` . The first two
terms give simply the catenoid and the last term is the sm
correction, sincee'0.1. This solution must satisfy bounda
conditions h(r 5r 0)5h0 , h(r 1)50, and 2gSA@cos(u)21#
2E1 /r150 at pointr 5r 1 , with u the contact angle betwee
the meniscus and the flat film. This third condition that giv
the force equilibrium at the edge of the meniscus is obtai
by minimizing energy~A1! with respect tor 1 , while keeping
h(r 1)50. It does not correspond to the zero contact an
since at the point of contact the dislocation is not a strai
line as in the case of flat wall, but has a circular shape
other words the circular dislocation cannot wet the flat s
face~Fig. 8!. Thus the shape of the meniscus far away fro
the wall is mainly determined by the energy of dislocatio
providing that the system is coupled to the reservoir of p
ticles which giveDp50. The conditions are sufficient t
determine the constantr ` , h` , andr 1 .

APPENDIX B

In this appendix, we recall how the mobility of a disloc
tion can be deduced from a creep experiment. The exp
ment consists of imposing a sinusoidal deformation to
sample of 8CB sandwiched between two glass plates tre
in homeotropic. The two plates make a small angleb that
can be controlled with a very high accuracy~of the order of
1024 rad!. Because of this angle, an array of elementary e
dislocations form in the middle of the sample~because they
are repelled from the two surfaces!. In a good sample, thes
equilibrium dislocations are separated by distanced/b, and
are the only dislocations that remain after recovery. T
sample is placed in a dilation cell that is described in det
in Ref. @22#. We just recall that the deformation is impose

FIG. 8. Catenoid profile calculated from Eq.~B3! with e50.1,
h`560mm, and r `5100mm. Note that the meniscus makes
nonzero angle with the film surface.
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by three stacks of piezoelectrics through a rigid frame, a
that the sample thicknessD and the angleb are fixed with
three differential screws. The temperature is stable wit
0.01 °C. The deformation of the sample is measured wit
LVDT ~linear variable differential transformer! which is
fixed on the oven close to the sample. It turns out that
cell is not infinitely rigid, and may be replaced by th
equivalent mechanical model shown in Fig. 9. In this mod
u(t) is the displacement imposed by the ceramics,a(t) is the
displacement measured with the LVDT, andk1 and k2 are
the force constants of the oven and the frame. Displacem
u(t) anda(t), and their phase shiftf, are measured with a
lock-in amplifier ~Stanford SR850!. The internal function
generator of the lock-in amplifier is used to supply the c
ramics. Sinusoidal deformations are used

u~ t !5u0 sin~vt !, ~B1!

a~ t !5a0 sin~vt1f!. ~B2!

At first, we take care thata0 never exceeds 50 Å to avoid a
undulation of the layers@23# and a helical instability of the
screw dislocations@22,18#. In these conditions the only dis
locations that contribute to the plastic deformation are
edge dislocations introduced by the misfit angleb. A calcu-
lation of the amplitude ratioa0 /u0 and of the phase shiftf
gives

a0

u0
5

A@ f c
21C~C11! f 2#21 f 2f c

2

f c
21~11C!2f 2 , ~B3!

tg~f!52
f f c

f c
21~11C! f 2 , ~B4!

wheref is the frequency,C a dimensionless parameter

C5
k1

k2
1

k1D

B
, ~B5!

and f c a relaxation frequency

f c5
k1bm

2p
, ~B6!

which depends on the mobility of the dislocations. Measu
ments are performed at low frequency between 0.01 and
Hz ~so that inertial effects can be neglected!. Constantsk1

FIG. 9. Equivalent mechanical model for the dilation cell us
to measure the mobility of the dislocations.
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and k2 may be obtained by measuring the viscoelastic
sponse of a silicon oil of known viscosity. This givesk1
58.93108 dyn cm23 andk1 /k250.097. In Fig. 10 we show
our experimental data for a sample of thicknessD
5100mm and angleb5531024 rad. The best fit to Eqs
~B3! and ~B4! gives B51.63108 erg/cm3 and m54.2
31027 cm2 sg21 at T527 °C. This value of the mobility is
in excellent agreement with that found previously in thi
smectic films.

We also measured the penetration lengthl. To do this, we
impose on the sample a sinusoidal modulation of increas
amplitude. The frequency chosen is much larger than
relaxation frequency. In practice, we performed our exp
ments in a 100-mm-thick sample between parallel gla
plates (b'1024 rad) at f 520 Hz, but we checked that th
results were independent of the frequency above 5 Hz
Fig. 11 we plot the amplitudea0 and phase shiftf as func-
tions of the displacementu0 imposed by the ceramics.

As expected, the response is linear as long asu0<u0
c

~elastic regime!. In this regime, the phase shiftf is constant
and close to zero~the dissipation is negligible!, and

a05
C

C11
u0 . ~B7!

Thus measuring the slope givesB.
When u0.u0

c , the curvea0 vs u0 shifts from the linear
law. This behavior results from the undulation instability

FIG. 10. ~a! Ratio of the amplitudes measured (a0) and imposed
(u0) as a function of the frequency.~b! Phase shiftf between the
measured displacement~a! and the imposed displacement~u! as a
function of the frequency.
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the layers@23#. It is very well known that this instability
develops~in 1 ms! when the sample thickness variation
more thane0

c52pl. Let a0
c be the value ofa0 at the onset.

According to our mechanical model, we have

e0
c5a0

c2
k1

k2
~u0

c2a0
c!. ~B8!

This equation allows us to calculatel. In 8CB at 28 °C, we
found l'8 Å. Note that the phase shift does not chan
significantly in the undulation regime, which means that t
dissipation is negligible in this regime. The situation b
comes different whena0.1.2a0

c . In this range of deforma-
tion, f ~and consequently the dissipation! strongly increases
~Fig. 11!. This effect is due to the nucleation of an array
parabolic focal conics@24#. These defects are clearly visibl
in the microscope.

FIG. 11. ~a! Measured displacementa0 as a function of the
imposed displacementu0 at f 510 Hz ~the results are independen
of the frequency between 10 and 50 Hz!. ~b! Phase shiftf as a
function of u0 . It significantly increases when an array of foc
parabolae nucleates.
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drèche ~Cambridge University Press, Cambridge, 1992!, p. 1.
@16# R. Bartolino and G. Durand, Mol. Cryst. Liq. Cryst.40, 117

~1977!.
@17# F. Nalet and J. Prost, Europhys. Lett.4, 307 ~1987!.
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